A-3-5. Obtain the transfer functions $E_{o}(s) / E_{i}(s)$ of the bridged T networks shown in Figures 3-24(a) and (b).
Solution. The bridged T networks shown can both be represented by the network of Figure 3-25(a), where we used complex impedances. This network may be modified to that shown in Figure 3-25(b).

In Figure 3-25(b), note that

$$
I_{1}=I_{2}+I_{3}, \quad I_{2} Z_{1}=\left(Z_{3}+Z_{4}\right) I_{3}
$$

(a)

(b)

(a)

(b)

Hence

$$
I_{2}=\frac{Z_{3}+Z_{4}}{Z_{1}+Z_{3}+Z_{4}} I_{1}, \quad I_{3}=\frac{Z_{1}}{Z_{1}+Z_{3}+Z_{4}} I_{1}
$$

Then the voltages $E_{i}(s)$ and $E_{o}(s)$ can be obtained as

$$
\begin{aligned}
E_{i}(s) & =Z_{1} I_{2}+Z_{2} I_{1} \\
& =\left[Z_{2}+\frac{Z_{1}\left(Z_{3}+Z_{4}\right)}{Z_{1}+Z_{3}+Z_{4}}\right] I_{1} \\
& =\frac{Z_{2}\left(Z_{1}+Z_{3}+Z_{4}\right)+Z_{1}\left(Z_{3}+Z_{4}\right)}{Z_{1}+Z_{3}+Z_{4}} I_{1} \\
E_{o}(s) & =Z_{3} I_{3}+Z_{2} I_{1} \\
& =\frac{Z_{3} Z_{1}}{Z_{1}+Z_{3}+Z_{4}} I_{1}+Z_{2} I_{1} \\
& =\frac{Z_{3} Z_{1}+Z_{2}\left(Z_{1}+Z_{3}+Z_{4}\right)}{Z_{1}+Z_{3}+Z_{4}} I_{1}
\end{aligned}
$$

Hence, the transfer function $E_{o}(s) / E_{i}(s)$ of the network shown in Figure 3-25(a) is obtained as

$$
\begin{equation*}
\frac{E_{o}(s)}{E_{i}(s)}=\frac{Z_{3} Z_{1}+Z_{2}\left(Z_{1}+Z_{3}+Z_{4}\right)}{Z_{2}\left(Z_{1}+Z_{3}+Z_{4}\right)+Z_{1} Z_{3}+Z_{1} Z_{4}} \tag{3-38}
\end{equation*}
$$

For the bridged T network shown in Figure 3-24(a), substitute

$$
Z_{1}=R, \quad Z_{2}=\frac{1}{C_{1} s}, \quad Z_{3}=R, \quad Z_{4}=\frac{1}{C_{2} s}
$$

into Equation (3-38). Then we obtain the transfer function $E_{o}(s) / E_{i}(s)$ to be

$$
\begin{aligned}
\frac{E_{o}(s)}{E_{i}(s)} & =\frac{R^{2}+\frac{1}{C_{1} s}\left(R+R+\frac{1}{C_{2} s}\right)}{\frac{1}{C_{1} s}\left(R+R+\frac{1}{C_{2} s}\right)+R^{2}+R \frac{1}{C_{2} s}} \\
& =\frac{R C_{1} R C_{2} s^{2}+2 R C_{2} s+1}{R C_{1} R C_{2} s^{2}+\left(2 R C_{2}+R C_{1}\right) s+1}
\end{aligned}
$$

Similarly, for the bridged T network shown in Figure 3-24(b), we substitute

$$
Z_{1}=\frac{1}{C s}, \quad Z_{2}=R_{1}, \quad Z_{3}=\frac{1}{C s}, \quad Z_{4}=R_{2}
$$

into Equation (3-38). Then the transfer function $E_{o}(s) / E_{i}(s)$ can be obtained as follows:

$$
\begin{aligned}
\frac{E_{o}(s)}{E_{i}(s)} & =\frac{\frac{1}{C s} \frac{1}{C s}+R_{1}\left(\frac{1}{C s}+\frac{1}{C s}+R_{2}\right)}{R_{1}\left(\frac{1}{C s}+\frac{1}{C s}+R_{2}\right)+\frac{1}{C s} \frac{1}{C s}+R_{2} \frac{1}{C s}} \\
& =\frac{R_{1} C R_{2} C s^{2}+2 R_{1} C s+1}{R_{1} C R_{2} C s^{2}+\left(2 R_{1} C+R_{2} C\right) s+1}
\end{aligned}
$$

B-3-8. Consider the electrical circuit shown in Figure 3-37. Obtain the transfer function $E_{o}(s) / E_{i}(s)$ by use of the block diagram approach.

Figure 3-37 Electrical circuit.

B-3-8. Equations for the circuit are

$$
\begin{aligned}
& \frac{1}{c_{1}} \int\left(i_{1}-i_{2}\right) d t+R_{1} i_{1}=e_{i} \\
& \frac{1}{c_{1}} \int\left(i_{2}-i_{1}\right) d t+R_{2} i_{2}+\frac{1}{c_{2}} \int i_{2} d t=0 \\
& \frac{1}{c_{2}} \int i_{2} d t=e_{0}
\end{aligned}
$$

The Laplace transforms of these three equations, with zero initial conditions, are

$$
\begin{align*}
& \frac{1}{C_{1} s}\left[I_{1}(s)-I_{2}(s)\right]+R_{1} I_{1}(s)=E_{i}(s) \tag{1}\\
& \frac{1}{C_{1} s}\left[I_{2}(s)-I_{1}(s)\right]+R_{2} I_{2}(s)+\frac{1}{C_{2} s} I_{2}(s)=0 \tag{2}\\
& \frac{1}{C_{2} s} I_{2}(s)=E_{o}(s) \tag{3}
\end{align*}
$$

Equation (1) can be rewritten as

$$
\begin{equation*}
C_{1} s\left[E_{i}(s)-R_{1} I_{1}(s)\right]=I_{1}(s)-I_{2}(s) \tag{4}
\end{equation*}
$$

Equation (4) gives the block diagram shown in Figure (a). Equation (2) can be modified to

$$
\begin{equation*}
I_{2}(s)=\frac{C_{2} s}{R_{2} C_{2} s+1} \frac{1}{C_{1} s}\left[I_{1}(s)-I_{2}(s)\right] \tag{5}
\end{equation*}
$$

Equation (5) yields the block diagram shown in Figure (b). Also, Equation (3) gives the block diagram shown in Figure (c). Combining the block diagrams of Figures (a), (b), and (c), we obtain Figure (d). This block diagram can be succesively modified as shown in Figures (e) through (h). In this way, we can obtain the transfer function $\mathrm{E}_{\mathrm{O}}(\mathrm{s}) / \mathrm{E}_{\mathrm{i}}(\mathrm{s})$ of the given circuit. .
(a)

(c) $\xrightarrow{I_{2}(s)} \xrightarrow{\frac{1}{c_{2} s}} \xrightarrow{E_{0}(s)}$
(d)

(f) $E_{i}(s)$

Can be reduced to:
(h) $\xrightarrow{E_{i}(s)} \sqrt{\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1} \mathrm{R}_{2} \mathrm{C}_{2} s^{2}+\left(\mathrm{R}_{1} \mathrm{C}_{1}+\mathrm{R}_{2} \mathrm{C}_{2}+\mathrm{R}_{1} \mathrm{C}_{2}\right) \mathrm{s}+1}} \xrightarrow{E_{0}(s)}$

